
CS 520: Assignment 2 - MineSweeper,
Inference-Informed Action

Aditya Vyas
Vedant Choudhary

Nitin Reddy
Siddharth Sundararajan

March 27, 2019

This project is intended to explore how data collection and inference can inform future action
and future data collection. This is a situation frequently confronted by artificial intelligence
agents operating in the world - based on current information, they must decide how to act,
balancing both achieving a goal and collecting new information. Additionally, this project
stresses the importance of formulation and representation. There are a number of roughly
equivalent ways to express and solve this problem, it is left to you to decide which is best
for your purposes.

1 Questions and Write-up

1.1 Representation
• Code: While writing the code, the minesweeper game is represented as a numpy matrix.

We have terminal based input variables through which we can change the size of the
matrix (default size = 8x8) and the mine density. Being a constraint-satisfaction
problem, we model the constraint equations as tuples - (list of variables, equation
value).

• Visualisation: Figure 1 displays our visualisation of the minesweeper environment. The
left matrix shows the actual map of minesweeper generated from our code. The right
side is a copy of the left matrix, the only difference is that the agent of our model is
run on the right matrix. So as the agent makes decisions, the right plot changes - safe
cells are opened, the number displayed and mines are flagged. The left actual plot
helps us test the efficiency and accuracy of our agent. The information is represented
just like a normal minesweeper game, through numbers, dots(where mines are placed)
and flags(where our agent thinks a mine is).

1



Figure 1: Minesweeper Game Visualisation

1.2 Inference
Our agent keeps 2 lists:

• mine-variables - a list of all cells/blocks which it thinks as having mines.

• non-mine-variables - a list of all safe cells/blocks

The agent plays the game in 3 phases recursively.

• Basic solver: The task of a basic-solver is obvious from its name - to solve the board
just by looking at the cells without any equations solving or subset evaluation.

– Click all non-mine-cells: By default, we have coded the environment in such
a way that the first cell which the agent opens/clicks is not a mine. So the (0, 0)
cell is always a non-mine variable. The agent iterates through all the variables in
the non-mine-variables list and opens them. When a cell is opened by the agent,
the following actions are taken by it

∗ Form the constraint-equation for the variable: When a non-mine-
variable is opened, a constraint-equation is formed which consists of addition
of its neighbours and an equation value.

∗ Remove the variable from other equations: SInce a cell is opened so
it becomes harmless. Hence it has to be removed from all the constraint-
equations of other variables in which it occurs

– Flag all mine cells: If the number of variable in equation is equal to value then
any variable in the list mine-variables is a potential mine and has to be flagged.

2



The agent flags all the cells in this list one by one. After flagging the cell it
removes the cell from all the constraint-equations it is present in. However, there
is a major difference here as compared to a non-mine cell. We do not only remove
a mine-variable from the equation but also subtract the value of the equation,
since now it contains one less mine-variable.

– Check the list of equations for more mine-variables and non-mine vari-
ables: This is the step which yields more mine and non-mine variables for the
agent to flag and open respectively. After removing non-mine variables and min
variables from other equations, the agent checks it knowledge base for the follow-
ing two types of equations

∗ A + B + C = 0: Any equation with a value of 0 gives us non-mine-variables.
Here A, B and C are all non-mine variables.

∗ A + B + C = 3: Any equation where the number of variables in the equation
is equal to the equation value gives us mine variables. Here A, B and C are
all mine variables.

• Subset solver: There will be a time when the above basic solver can no longer find
individual equations that yield more non-mine and mine variables. This is where we try
breaking down subsets of equations. The agent creates subsets of constraint equations
present in the knowledge base and starts solving them. For example: if there are two
equations A + B + C = 2 and B + C = 1, then the agent deduces that A definitely has
a bomb by substituting the second equation into the first one. This procedure is run
iteratively and it solves the knowledge base quite efficiently.

• Random opening solver: Finally there will be a time when no further subsets can
be deduced and all the equations are exhaustive of each other. For example: if there
are two equations A + B + C + D = 3 and B + C = 1, solving the subset does not
lead to any new inferences. In such a scenario, the agent relies upon random (with a
heuristic) opening of cells to make and deduce new equations. If the agent comes to
this stage, it means that the current knowledge base is not sufficient enough to make
any further inferences. The next cell selection is not totally random. The agent uses a
heuristic based on the probability of any cell having a bomb before making a random
click. The lesser the value of this heuristic, the more likely it is to open that cell.

Based on the three phases the agent goes through, the agent deduces almost everything
possible before continuing further. But, the agent can be improved by incorporating a
backtracking algorithm. With this incorporation, we can ensure that the agent has been
thorough by inferring all possible inferences from the knowledge base. This would ensure
that the agent is extensive in solving the minesweeper. Our agent is able to deduce everything
from a clue before proceeding because from the way we have coded our agent, it will try to
break down equations to either of the two forms we described previously. If there are no
such equations it will store them and proceed to getting more clues. We are sure about this
because we also have a way of visualising the knowledge base of our minesweeper agent

3



Figure 2: Printing all the equations in the knowledge base

1.3 Decision
Given the current state of the board, and a state of knowledge about the board - the knowl-
edge base - the agent uses the following 3 steps to move ahead

• Check the list of mine and non-mine variables using basic solver. If any mines and
non-mines found, then flag and open them respectively. If nothing can be deduced,
proceed to evaluating subsets.

• Solve subsets and find non-mines and mines by breaking down the equations.

• Click randomly if no subsets can be resolved.

There is one potential risk that is bound to occur in the third phase since the agent opens cells
in a quasi-random manner. Although the heuristic reduces the risk, it does not guarantee
the opening of a safe cell. As mentioned earlier, this can be tackled using a backtracking
method. Another risk/disadvantage is that in environments with high-mine density the
heuristic-method of randomly opening cells would fail.

4



Figure 3: An example where the random opening strategy based on heuristics would get
stuck

Our random opening algorithm looks at neighbours of all the open cells and then randomly
clicks on the neighbours of an open-cell with the minimum risk value. However, in cases
where all the neighbours of open-cells are mines, it will not be able to proceed further. For
this we have coded a final phase for our agent - When everything else fails and there is no
way of proceeding further just click randomly anywhere - something which we also do when
we are stuck.

1.4 Performance
1.4.1 Performance 1

We take a 15x15 environment grid and use 0.13 mine density, which leads us to the following
progression.

5



Figure 4: Initial stage of gameplay

Figure 5: Midway of gameplay

6



Figure 6: Almost finished playing the game

Figure 7: Game over

We can observe that in the above game, our agent played very efficiently and was able to flag
all the mines properly except the last 2 in the top left corner. It was not a surprise for us
because on observing the set of equations that were left at that stage, there were no subsets
which could be evaluated and hence no way for the agent to deduce mine and non-mine
variables. Technically, we can use backtracking in such cases but we have left it for future
work. Hence, based on whatever we coded, the agent just clicked on the cells randomly.

7



1.4.2 Performance 2

(a) Average Final Score vs. Mine Density (b) Average Density of Mines Opened vs.
Mine Density

Figure 8: Performance metrics for a 15x15 minesweeper vs. Mine density

The agent plays minesweeper on a board of size 15x15 and for each mine-density, we play 10
games. The mine density ranges from 0.01 to 0.5 with a step-size of 0.01. We observe that
the results obtained agree with our intuition.

• As the mine density increases, the average final score decreases. For the first few mine-
densities the number of mines flagged is exactly equal to the total number of mines
present giving a score of 1.0. However, with increasing mine-density the difficulty also
increases and hence the average score goes down.

• Similarly, with increased mine-density the average density of mines hit by the agent
also increases. This also agrees with our intuition and we see that although the agent
opens more number of mines as the density increases, this increase is gradual and not
steep.

Based on the above graphs, we see that the game can be called "hard" when the density of
mines hit by the agent is 0.10 - the agent hits 10 percentage of the total mines - which occurs
at mine-density 0.3.

1.5 Efficiency
While implementing the minesweeper agent, we did encounter a time constraint

• The knowledge base of the agent is represented by a python list with the individ-
ual equations as tuples. When the agent removes a variable from other constraint-
equations, it will make a pass through its entire knowledge base. This is a time con-
suming operation. For very large grid sizes and large number of equations, this leads
to increase in time complexity.

The above problem is an implementation-specific constraint which can be removed by chang-
ing one aspect of the way in which we store equations. We also store the equations which a

8



variable is part of as a separate attribute of the variable. Hence, when we need to remove
variable, we directly access this attribute containing all the equations which this variable
is part of and make a pass through only those specific equations rather than the entire
knowledge base.

1.6 Improvements
The information about the total number of mines in the environment is modelled in such a
way that if the number of cells flagged becomes equal to the total number of mines in the
game, then the agent will blindly open all the closed cells without any inferences. This check
can be added at various stages in our code to make the solving of the game faster

• In the basic solver phase, the agent makes the check when all the obvious equations have
been checked. This means that the agent makes the check at the end of basic solver.
If the number of mines present in the game equal the number of mines uncovered, the
agent uncovers all other cells and then exits the game.

• In the subset solver phase, the agent makes the check after solving the subsets at every
iteration (i.e., before using the created subsets to go for the recursive round). Similarly,
if the count found is equal, then the agent uncovers all the cells and exits the game.

This information helps the agent to be computationally more efficient. This is because the
agent is able to reach a consensus based on this information, so it saves on checking the
remaining cells and just uncovers them and exits. This is efficient compared to the normal
CSP agent. Hence, the time to play the game decreases a lot which can be seen by the
performance plots below.

(a) The Improved CSP Agent (b) The Normal CSP Agent

Figure 9: Average Density of Mines Hit vs Mine Density

9



(a) The Improved CSP Agent (b) The Normal CSP Agent

Figure 10: Average Final Score vs Mine Density

(a) The Improved CSP Agent (b) The Normal CSP Agent

Figure 11: Average Game Playing Time vs Mine Density

From the above plots, we observe that the average final score and the average number of
mines opened is the same for both the agents. However, there is a very significant difference
in the playing times of these agents and the reason is what we mentioned before - the
improved agent has an extra knowledge which makes it stop evaluating the equations once
the total mines are opened or flagged.

2 Bonus: Chain of Influence
• Based on your model and implementation, how can you characterize and
build this chain of influence? Hint: What are some ‘intermediate’ facts
along the chain of influence?

– In the program which we have developed, we start off with (0, 0) cell and we
have made sure that this cell does not contain any mine. Opening the cell leads
to the creation of our knowledge base. This KB gives information regarding the
adjacent cells to the current cell (which is (0, 0) in the first step). Although not

10



implemented, but we can easily keep a record of the chain of influence by creating
a dictionary/hash table. The key can be the current cell and the value can be the
cells from which the state of the current cell can be deduced (parent cells) - for
which the steps have been elaborated in previous sections. For example, the first
step is opening (0, 0) - it will have no parent cells because there was no KB in our
system. After that, to open/flag (0, 1) (since we open cells sequentially), we need
the knowledge from opening cell (0, 0), hence in this case the hash table/dictionary
will have key as (0, 1) and value as (0, 0). By following this simple logic, we can
incorporate chain of influence in our current code base.

• What influences or controls the length of the longest chain of influence when
solving a certain board?

– The chain of influence can be either deep or wide. If the length of longest chain
of influence has to be categorized by how deep it is, then that length can be
controlled by how less random cells are opened. In our case, since we open up
the cells sequentially, we are creating a deeper chain of influence with minimal
branching (since neighborhood of cells are in constraint equations of each other,
so are represented by a smaller KB). However, if the length of longest chain of
influence has to be categorized by how wide it is, then that length can be controlled
by how many random cells are opened. If more random cells are opened, we are
looking at constraint equations having no dependency on each other, hence no
new cell can be deduced in a deterministic way and we will end up exploring a
lot of cells with no definite answer.

• How does the length of the chain of influence influence the efficiency of your
solver?

– The length of chain of influence has a direct impact on the efficiency of the solver.
When there is a thin deep chain of influence, the efficiency of the solver is high
because the solver is able to deduce the KB in a deterministic fashion, rather
than deducing randomly. While, if the solver chooses random points to open
up, its efficiency decreases as it is more unsure about the state of a particular
cell. In our program, the thinner deep chain of influence is created by basic
solver + subset problem, while more branched chain of influence is induced by
the random heuristic step of the solver. Any new constraint equation expands the
KB and hence, increases the computing cost. If the solution to the problem is a
thinner deeper chain of influence, the constraint equations formed along the way
are dependent on each other hence, the KB does not expand as much as it would
if independent constraint equations are formed (due to random cell opening).

• Experiment. Can you find a board that yields particularly long chains of
influence? How does this vary with the total number of mines?

– A board which will have no mines will yield the longest chain of influence, because
it will keep expanding based on the first query. This type of board can be achieved
in our program when the only random cell (without any knowledge) opened is the

11



initial cell (0, 0). As the number of mines are increased, the chain of influence
will decrease. The mines essentially block the expansion of the KB.

• Experiment. Spatially, how far can the influence of a given cell travel?

– The farthest a chain of influence can go is the whole spatial map of the board.
This can be strengthened by an example. Suppose, we start off at (0, 0) (as in
our program), if there is only one mine and it is at the position (Size-1, Size-1),
then this cell would get affected by the previous cell opened, and that previous
cell would depend on its parent cell. This will basically form a chain of influence
from the starting point (0, 0) to (Size-1, Size-1). Since, no other mine is present
in this scenario, the chain of influence never breaks till last cell is opened.

• Can you use this notion of minimizing the length of chains of influence to
inform the decisions you make, to try to solve the board more efficiently?

– If we pick the cells which are more connected to the constraint equations (coming
most of the time in a set of equations), we can minimize the length of chains of
influence.

• Is solving minesweeper hard?

– Solving the maze from our solver is mostly not that hard, given the computing
capabilities allows us to. As per our agent, it correctly deduces most of the cells
based on basic solver + subset solution. However, in the cases when no deduction
can be made, the agent uses a heuristic approach based on probabilities to open
up a new cell. This can lead to an error that the opened cell is actually a mine.
When this kind of scenario arises quite often, we can say that at that point, the
size of the board and mine density makes solving the game harder.

3 Bonus: Dealing with Uncertainty
• When a cell is selected to be uncovered, if the cell is ‘clear’ you only reveal
a clue about the surrounding cells with some probability. In this case, the
information you receive is accurate, but it is uncertain when you will receive
the information.

– We have implemented this part of the bonus question, and the agent will apply the
above condition when we pass a terminal argument "-bp" along with a probability
of the clue being revealed about the surrounding cells.

– Everything remains the same except that every time the agent clicks open a cell,
it’s constraint-equation is formed with the above probability and so we either add
the constraint equation to our knowledge-base or we dont. In this way, the agent
always has less information to make any inference or deductions than the previous
version. This also has an effect on randomly clicking any square and the clue in
the cell has an impact on the risk factor being calculated. If the cell is clicked
and not revealed, we do not consider it towards risk factor calculation.

12



– We see that, the performance of the Minesweeper agent with this uncertainty
condition has a significant impact on its performance. As the mine density in-
creases(difficulty increases) the performance decreases. This is due to the fact
that, when there are fewer mines, most of the clue tends to reveal almost same
inferences or deductions, but however, as density increases, each clue tends to be
more important and discarding such clues based on the probability will lead to
loosing important information about the environment.

– We can see the performance of this agent here:

(a) Average Final Score vs. Mine Density (b) Average Density of Mines Opened vs.
Mine Density

Figure 12: Performance metrics for a 15x15 minesweeper vs. Mine density

We observe that this agent performs worse than the normal CSP agent. For
the normal CSP agent, the average final score tends to decreases gradually and
remains constant for the first few mine-density values. However, the probability
agent’s score decreases steeply and reaches almost 0.5 at mine-density of 0.5.
Similarly, the average density of mines hit also increases steeply - this can be seen
by the fact that for the normal CSP agent the density of mines hit crosses 0.1 at
mine-density of 0.3 at which point it becomes a hard game for it. However for
the probability agent, it becomes hard at mine-density of 0.1 at after which 10
percentage of mines are hit.

• When a cell is selected to be uncovered, the revealed clue is less than
or equal to the true number of surrounding mines (chosen uniformly at
random). In this case, the clue has some probability of underestimating
the number of surrounding mines. Clues are always optimistic.

– Similarly as in the case above, on clicking the square, we would receive the clue to
be less than or equal to true surrounding mines, which will be chosen uniformly at
random. So once, we have the new equation added to the whole set of constraints,
we will only proceed with flagging the mines since that is what the agent will be
fully confident about.

13



– For example, A+B +C = 3, would only mean that all the cells A, B, C are mines,
but A + B + C = 0 does not mean that all cells are safe to click since the clues
are optimistic. Based on this logic, the agent only flags mines.

• When a cell is selected to be uncovered, the revealed clue is greater than
or equal to the true number of surrounding mines (chosen uniformly at
random). In this case, the clue has some probability of overestimating the
number of surrounding mines. Clues are always cautious.

– Similarly as in the case above, on clicking the square, we would receive the clue
to be greater than or equal to true surrounding mines, which will be chosen
uniformly at random. So once, we have the new equation added to the whole
set of constraints, we will only proceed with opening the safe square since that is
what the agent will be fully confident about.

– For example, A + B + C = 0, would only mean that all the cells A, B, C are safe
to click, but A + B + C = 3 does not mean that all cells are mines since the clues
are cautious. Based on this logic, the agent only clicks squares. Also, follows
the same logic for choosing square to click obtained from the subset constraints
solver.

14


	Questions and Write-up
	Representation
	Inference
	Decision
	Performance
	Performance 1
	Performance 2

	Efficiency
	Improvements

	Bonus: Chain of Influence
	Bonus: Dealing with Uncertainty

