
Live Monitoring and Analysis of PyPI Downloads
Nitin Reddy, Ravi Vasani, Xuan Wang

Instructor : Prof. James Abello
Computer Science Department

Rutgers University
Piscataway, NJ, USA

Abstract— Considering the popularity and increasing usage of
python packages this project shows live monitoring and analysis of
package downloads. The project is useful for developers , researchers
and even business entity to see what the world is using or what is
the trend. The dashboard contains statistics about the live data and
also it shows analysis on historical data.

I. PROJECT DESCRIPTION

Since, The Python ecosystem is vast and far-reaching
in both scope and depth. In this project we came up with
an idea of analyzing the python package downloads on
all over the world. This project involves data collection,
data analysis, visual interaction and UI implementation for
perfect dashboard. Here we intended to develop a interactive
dashboard. For some time now PyPI have archived all of the
logs generated by users. And not many have analyzed this logs.

The motive for the project is to build a dashboard that
shows live streaming of the python package downloads from
PyPI and monitor the trend or shift of packages that are
currently being downloaded. The dashboard can be broadly
divided into 2 categories - Live data and Historical Data.

Live Data : This part of dashboard demonstrated the
streaming data and various metric such as number of
downloads in particular region, rate of download and top
packages being downloaded.

Historical Data : In addition to that analysis of historical
data helps to get trends, information that reflects insights on
the data.

This dashboard basically answers following questions
• How many packages are being downloaded in any Coun-

try X?
• What is the rate of download ?
• How many packages are being downloaded?
• What is the top downloaded package now and their

distribution?
• How does the rate of download look like over time?
• For any period, any country what are the top packages

downloaded?
• How does download of one package compare to other

over time?

The prospective information that can be gained from the
dashboard can help developers, maintainers or decision makers
that uses python. They can see the trends, demands and
understand the progress of technology across these categories-

• NLP
• Scientific
• GUI
• Networking
• Machine Learning
• Visualization
• Data Analysis
• Development
• Deep learning and many more.

The user can get information about usage, popularity and
demand of different python frameworks.

The stumbling block for this project is the scale of data.
Each data entry shows particular package downloaded at
certain point of time in a region with system specification on
which the request is made each second. To handle enormous
amount of data we have used google big query API to fetch
data that is updated every second on the servers.

To get insights from the data we had to try and come
up with different visualisation that could represent the data
better. Trying various visualisations helped us in finding some
interesting insights.

The project has four stages: Gathering, Design, Infrastruc-
ture Implementation, and User Interface.

A. Stage1 - The Requirement Gathering Stage.

• The general Project description:

The project is based on live monitoring and analysis
of PyPI downloads and the purpose is to analyze
python package downloads all over the world based on
interactive dashboard that involves live and historical
data. We have seen several important developments in
python frameworks/packages and a dashboard like this
can help a new user researcher or open source developer
understand those trends and changes.



To make a visually attractive and interactive dashboard
and to solve a problem we used data from python’s
software foundations that is linked with Google Big
Query. Since PyPI stat attempts to operate within free
tier of its hosted services. So, eventually aggregate data
is only retained for 180 days.

To get a data for brief period of time and make some
analysis we used API for Google Big Query to get
aggregate data for packages.

The dashboard was developed keeping the following
users in mind -

• User Type 1 - Student:

– Scenario 1 description: This user is student who
typically use python for study.They can see live
data streaming and get information about usage and
popularity for packages. Even in our historical data
analysis user can check shifts trends of approx. 100
packages.
After adding date range and packages name The
dashboard will show trend lines with important in-
formation with the plots.

• User Type 2 - Researcher:

– Scenario 2 description: Other type of user can be a
researcher that want to see a package in demand for a
particular category and might want to shift according
the popularity of the package.

• User Type 3 - Open Source Developer :

– Scenario 3 description: Based on the analysis pro-
vided by by the dashboard developers can decide to
contribute to the projects that are gaining popularity
and have acceptance regionally.

• User Type 4 - Industry Application :

– Scenario 4 description: Even this dash board can
have business perspective based on the python pack-
age downloaded with particular system requirement
in a region may give an idea of providing system
compatibility to python version in a region.

In all of the above cases user will be provided with a
login ID and password For all use cases data is fetched
from Google Big Query.

• Project Time line

– Week 1 - Planning the problem formalization and set-
ting up the development environments. Did research
on related problems and determine the corresponding
user type and scenarios.

– Week 2/3 - Basic Analysis , Requirement Analysis
and Data gathering.

– Week 3/4/5 - Implemented Live streaming and did
historical with small chunk of data and implement
the user interface.

– Week 6/7/8/9/ - Performed analysis for live stream-
ing, offline data and In addition to that we parallelly
worked in building our UI for the dashboard.

Here is the detailed project time-line

For the division of labor, For the most part each of these
tasks are undertaken in a collective fashion, from Nitin
handling UI, plots and Xuan, Ravi supporting with data
and plots for analysis and documentation.

B. Stage2 - The Design Stage.

• Short Textual Project Description.

In a requirement gathering part we tried to make two tabs
in a dashboard that involves two parts

– Live Streaming Data
– Historical Data

One tab for live streaming would show live downloads in
different regions and download rate etc. And Historical
Data tab user can set date range and package name and
see the trend lines for that packages. But when we grew
monitoring over data and gained insights from the data,
we extracted historical tab into two tabs

– One for specifically countries
– One for package trend lines

So finally, dashboard contained two tabs
– Live Data
– Countrywise Analysis
– Package Trendlines

• Conceptual Diagram

Conceptually, after data is generated from different end
points all over the world , it is stored into Google
big query and the interface shows live monitoring and
analysis of data as show in architecture. The architecture
of the application can be found below -



In our dashboard we have used tree map to build a plot
that shows top 10 packages downloads per second.

• High Level Pseudo Code for the tree map

The algorithm recursively computes children’s layout
of the treemap rectangle. If adding a rectangle to
the current row will improve layout contained by the
row then the rectangle will be added to the cur-
rent row else fix current row and start new row in
the remaining subrectangle. The criteria of whether
there is a improvement is the highest aspect ratio of
listed rectangles(e.g.max(height/width,width/height))
surpassing the old one which does not contain the pro-
cessing rectangle.

Algorithm 1 Squarified Treemap Algorithm
Input:

children, A list of children for one rectangle;
row, A list of rectangles that is currently being laid out;
w, rectangle sizes in treemap;

Output:
Rectangles layout;
{worst() function gives the highest aspect ratio of a list of
rectangles; ++ gives concatenate operation; layoutrow()
adds a new row of children to the rectangle; width()
returns the length of the shortest side of the remaining
subrectangle in which the current row is placed;}

1: c = head(children);
2: if worst(row,w) ≤ worst(row ++[c], w) then
3: squarify(tail(children), row ++[c], w)
4: else
5: layoutrow(row);
6: squarify(children, [], width());
7: end if

C. Stage3 - The Implementation Stage.

For live monitoring and analysis, we have used approx.
57TB of data that involves 50-100 million entries in data set
every day.

To accomplish this project we have used

• Python
• Dash
• Plotly
• Flask
• D3.js
• HTML
• CSS
• Javascript
• SQL Scripting
• Google BigQuery

Also, we got some take away from Visual Analytics master
book to use parallel coordinate plots for spatio temporal data
when space and time combined can lead to insights.

• Data Description

D. Stage4 - User Interface.

The user interface of this system is implemented on a
Dash Python with Plotly. The users are supposed to easily
straightforward login into dash board with credentials and start
interacting with the dashboard.



Different types of users share the same operation process by
simply entering username and password getting a result image
shown here.

That includes live counts for
• Number Of Downloads
• Rate of Downloads (Packages per Second)
• Number of Unique Modules Downloaded

This page is over view of Live Streaming of Data

Choropleth for Number of Downloads

This plot show the current downloads in each and every
country. So total number of downloads in region is showed
based on density. The scale in the right of the plot shows the
range of number of current downloads in each country.

Choropleth for Rate of Downloads
This plot show the current download rate in each and every

country. So total number of downloads per second in region
is showed based on density. The scale in the right of the plot
shows the range of number of current download rate in each
country.

Download Rate - Time Elapsed

This plot show the current download rate with time elapsed
in each and every country. Here, x axis shows time and y axis
shows number of downloads at that particular time.

Tree Map - Top 10 Packages

This plot shows Number of downloads per second of top 10
packages at that particular time. The algorithm for tree map
is shown earlier in this report. Tree map is based on square
of side 100.The size of each rectangle in the tree map shows
the number of package in download per second. So, Size of
the rectangle represents counts of the number of download per
second and it updates every second.



Country level Analysis of Data is the second tab and it looks
as below.

In this plot user can select Date range and the number select
the packages from list that they want to analyze. In the left ,
the choropleth shows the total downloads of python packages
in each country. Total number of downloads are adjusted to
color scale in the choropleth. In addition to that while user
hover over specific country the bar chart in the right displays
number of top 5 package downloaded in that country.

Scattered Plot - For Comparisons

Above scatter plot is intended to show comparison of 2
packages across countries. Basically, User can select two
packages from the list of packages in country wise analysis
page. So, In this picture all of the countries are listed and user
can see the comparison for usage and popularity of package
in specific country.

Package Trends

In Package Trends tab user can select the package from
package list and in the plot it can see the trend analysis over
years.

In addition to that ,we also tried to include different metric
to get insights from the data of relatively longer period of
time.

User can select a metric using radio button and the results
are displayed according to the metric selected.

• Actual
• 10 Day Moving Average
• 20 Day Moving Average
• 30 Day Moving Average
Plot also gives user to select a time frame from bottom and

select a packages to compare.

Also, using we tried to get some insights on a daily basis
for package downloads. For that we have implemented geo-
scatter plot and choropleth that shows number of downloads
over a period of day in different countries.

• Findings

As shown in figure 1, A constant dip occurred once
in week and then rises for rest of the week for all
the packages.The reason behind this can be Some of
python servers could have possible downtime in week
or Application might have setup to update their packages
every week.

Figure 2 shows that US undoubtedly dominated the
downloads for any package.Reason could be most of the



application using python might have setup servers in US
or when downloading show their location as US.

UK is more inclined towards Natural Language Process-
ing than deep learning when compared with rest of the
world.Reason -Since a part of EU, required to work with
different languages spoken in EU.That is shown in figure
3.

According to figure 4 ,Seaborn was most preferred until
March 2018, then plot.ly surpassed in total downloaded
post that.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

REFERENCES

[1]Data : https://bigquery.cloud.google.com/table/the-psf:
pypi.downloads20190212?tab=preview

[2]API, https://pypistats.org/
[3]Dash, https://dash.plot.ly/
[4]Master Book, http://www.vismaster.eu/wp-content/

uploads/2010/11/VisMaster-book-lowres.pdf
[5]NumFocus, https://numfocus.org/wp-content/uploads/

2018/07/NumFOCUS-Corporate-Sponsorship-Brochure.pdf
[6] Data Visualization: A Successful Design Process â by
Andy Kirk

[7] Guidelines for Using Multiple Views in Informa-
tion Visualization - http://courses.ischool.berkeley.edu/i247/
f05/readings/Baldonado MultipleViews AVI00.pdf

[8]Mark Bruls and Kees Huizing and Jarke van
Wijk,’Squarified Treemaps’, In Proceedings of the Joint
Eurographics and IEEE TCVG Symposium on Visualization,
press, 1999 pp. 33-42

https://bigquery.cloud.google.com/table/the-psf:pypi.downloads20190212?tab=preview
https://bigquery.cloud.google.com/table/the-psf:pypi.downloads20190212?tab=preview
https://pypistats.org/
https://dash.plot.ly/
http://www.vismaster.eu/wp-content/uploads/2010/11/VisMaster-book-lowres.pdf
http://www.vismaster.eu/wp-content/uploads/2010/11/VisMaster-book-lowres.pdf
https://numfocus.org/wp-content/uploads/2018/07/NumFOCUS-Corporate-Sponsorship-Brochure.pdf 
https://numfocus.org/wp-content/uploads/2018/07/NumFOCUS-Corporate-Sponsorship-Brochure.pdf 
http://courses.ischool.berkeley.edu/i247/f05/readings/Baldonado_MultipleViews_AVI00.pdf
http://courses.ischool.berkeley.edu/i247/f05/readings/Baldonado_MultipleViews_AVI00.pdf

	Project Description
	Stage1 - The Requirement Gathering Stage. 
	Stage2 - The Design Stage. 
	Stage3 - The Implementation Stage. 
	Stage4 - User Interface. 

	References

